skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yu, Xiaoqi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    A highly chemoselective as well as enantioselective fluorescent probe has been discovered for the recognition of the acidic amino acids, including glutamic acid and aspartic acid. This study has established a novel amino acid recognition mechanism by an aldehyde-based fluorescent probe. 
    more » « less
  3. Abstract The first near IR fluorescent probe for the chemoselective and enantioselective recognition of arginine in aqueous solution is reported in this work. This probe, made of a 1,1’‐binaphthyl‐based chiral aldehyde unit and a rhodamine‐based near IR chromophore, in combination with La3+exhibits highly chemoselective as well as enantioselective fluorescent enhancement with arginine at λ=764 nm upon excitation at λ=690 nm. Little or no fluorescent response is observed toward the chirality miss‐matched arginine enantiomer or other common amino acids and their enantiomers. This probe also allows visual discrimination of the arginine enantiomers because of its fast and distinct color change upon interaction with the substrate. 
    more » « less